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Recent work has explored the surprising result that people often do not improve their decision making when supported by an

explainable AI (XAI). A main cause of this result is overreliance: people accept the XAI’s answer even when the explanation makes

clear that the XAI is wrong. Prior literature ties overreliance to cognitive biases or uncalibrated trust, finding that overreliance is

extremely challenging to reduce. In this paper, we produce evidence that humans strategically decide when to engage with an XAI. We

find that overreliance can be reduced, because overreliance arises specifically when the effort required to verify the XAI’s answer is

high compared to the effort required to complete the task manually. Our study (𝑁 = 340) manipulates task difficulty, finding that

XAI does not reduce overreliance for easier tasks, where the effort required to complete the task without the XAI is low, but does

reduce overreliance for difficult tasks, where manual verification is effortful and so verifying the XAI’s explanation is less relative

effort. These results suggest that the absence of performance improvements in previous XAI studies may be in part due to the XAI not

providing a substantial enough effort reduction.
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1 INTRODUCTION

Support from explainable artificial intelligence (XAI) offers the potential for high performing human-XAI teams [31].

In fact, it is frequently assumed that human-XAI teams will achieve complementary performance on challenging

decision-making tasks: that human-XAI teams will perform better than either humans or XAIs alone [1, 5, 31, 32]. From

medical diagnosis [11, 42], to recidivism prediction [2, 24], employee hiring [25], and loan risk assessment [20], XAI

decision-making systems have been deployed in the hopes that this complementarity will result in better outcomes.
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Fig. 1. Types of reliance on AI systems. Provided with a prediction from an AI system, a human decision-maker has the choice to
either accept or reject the AI’s prediction. Appropriate reliance occurs when the human accepts a correct AI prediction or corrects an
incorrect AI prediction. Underreliance occurs when the human fails to accept an correct AI prediction. Overreliance occurs when the
human fails to correct an incorrect AI prediction.

Unfortunately, this promised human-XAI team potential has yet to be realized. The only situation where human-XAI

teams outperform people alone is when the AI model’s accuracy is higher than human-only accuracy [6]; but in these

situations, human-XAI teams also perform worse than the XAI alone [9]. A central reason for this divergence between

promise and reality is overreliance: instead of combining their insights with the XAI’s predictions and vetting the XAI’s

explanation, people accept the XAI’s prediction when the XAI is incorrect. Of the possible error types in human-AI

decision-making (overreliance and underreliance; see Figure 1), overreliance has been observed most frequently in

empirical XAI studies [6, 8, 9, 37, 54]. Overreliance results in foregoing agency and accountability to the AI when

making final decisions [10, 26, 38], and is of particular concern in high-stakes domains, running the risk of reinforcing

machine bias [2, 20] under the guise of human agency. In principle, explanations should help humans identify when

the AI’s reasoning is incorrect, and thus reduce overreliance [7, 10, 12]. Despite this, XAI methods do not empirically

improve peoples’ ability to discern correct from incorrect model predictions [6, 9]. As such, current theories suggest

that overreliance is an inevitable result of biases in human cognition, as explanations increase trust [53, 54], anchor

humans to the prediction [9, 51], or require cognitive effort to verify [6, 9, 54].

In this paper, we demonstrate that overreliance can be reduced and produce evidence that overreliance arises in

situations where the effort required to verify the XAI is high relative to the effort required to complete the task manually.

We claim that overreliance is not an immutable inevitability of cognition but a strategic choice where people are

responsive to the costs and benefits of engaging in the cognitive effort that is required to reduce their overreliance.

This paper tests whether manipulating the costs of an effortful strategy—verifying the AI—has the effect of reducing

overreliance, opening an avenue to improving human-AI team performance. Specifically, we hypothesize that the

overreliance will decrease in conditions where explanations substantially reduce the cognitive effort, i.e. the costs,

incurred to verify the AI’s predictions.

We test this cost-benefit framework through an (𝑁 = 340) online experiment where we measure levels of overreliance

as well as utility. Our study modifies the cognitive costs of the task, thus modifying the effort required to verify AI

predictions. We study overreliance in the context of a maze solving task.
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The study results validate our hypothesis. We replicate prior work in finding no differences between levels of

overreliance on predictions with and without explanations when the cost conditions are similar to prior studies; we then

extend this prior work by manipulating the cost and benefit of using the XAI and find changes to levels of overreliance.

In high-effort tasks, explanations significantly reduce the cognitive effort of verifying the AI compared to doing the

task without explanations. However, overreliance does not change for low-effort tasks even when explanations are

present, since explanations do not induce a significant reduction in cognitive effort for the low-effort task condition.

Our results suggest that some of the null effects found in literature could be due in part to the XAI not reducing the

costs of verifying the AI’s prediction far enough.

2 BACKGROUND

2.1 Human-AI decision making

Empirical HCI studies of human-AI collaborative decision-making find little evidence that human-AI teams actually

achieve complementary performance in which teams perform better than a human or an AI alone [6]. Recent studies

do not find that explanations improve performance above a prediction-only baseline [6, 13], offering evidence for the

following theory: that explanations serve as yet another signal to blindly overrely. In such complementary domains,

explanations (even those generated by humans [6]) appear to increase reliance on both correct and incorrect model

predictions. Among inputs themodel predicts incorrectly, humans achieve worse performance than if they had completed

the task by themselves. In light of growing concerns surrounding machine bias [2, 20], such overreliance on incorrect

model predictions is particularly concerning and is the primary focus of our work. We investigate the conditions under

which people engage in effortful thinking to verify AI predictions, reducing overreliance. We are guided by the following

research question:

ResearchQuestion: Under what conditions do people engage with explanations to verify AI predictions,

reducing overreliance?

2.2 Cognitive biases in decision-making

Based on dual process theory [29, 30], a recent study investigates the use of cognitive forcing functions—interventions

designed to encourage effortful, analytical thinking—as a means for reducing overreliance [9]. The authors find that

forcing functions successfully reduce overreliance on incorrect model predictions. However, they also reduce reliance

on correct model predictions, yielding no significant differences in overall performance. The authors also identified an

interesting trade-off: participants performed best in the conditions they preferred and trusted the least. We continue this

line of work using a cost-benefit framework instead of cognitive forcing functions to encourage effortful and analytical

thinking.

2.3 Decision-making in behavioral economics

Human decision-makers are “satisficers”, devoting only as much effort as is minimally satisfactory rather than aiming

for optimal decision-making outcomes [47]. To frame this aversion to engaging in effortful thinking in economic terms:

people weigh the potential benefits of cognitive effort against its perceived costs [34, 44]. In this economic framing,

effort-based decision-making is modeled as a selection among different cognitive strategies, each associated with its

own perceived benefits (in terms of task performance) and costs (in terms of cognitive effort). Decision-makers navigate

this effort-accuracy trade-off [28] by adopting the strategy which maximizes subjective utility as a function of costs and
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benefits [34]. In the context of computer-based decision aids, prior work has found that decision aids which reduced

the cognitive effort associated with a particular strategy induced behavior associated with that strategy [49], implying

that decision-aid designers can influence cognitive strategy selection by manipulating costs. Our study investigates the

effect of XAI methods by manipulating the costs associated with a high-effort strategy which verifies an AI’s predictions

versus the low-effort strategy of overreliance.

3 A COST-BENEFIT FRAMEWORK FOR HUMAN-AI COLLABORATION

Frameworks proposed in prior work–from anchoring biases [9, 51] to humans’ innate adversity to cognitive effort [9, 34,

44, 54]–suggest that overreliance is the default and inevitable state of human performance when given an explanation.

These frameworks do not account for other findings where people choose cognitively difficult strategies when interacting

with AI without cognitive forcing functions [22, 41]. To account for this contradiction in findings, we propose that

overreliance is not a default cognitive state, as suggested by previous frameworks in XAI research, but instead the

result of an unconscious strategic choice among strategies. In the field of behavioral economics, the cost-benefit

framework [34, 44] can help explain which decision making strategies people choose. In this framework, people

subconsciously weigh the costs (e.g., cognitive effort) and benefits (e.g., task performance) of performing different

cognitive strategies. The person forms an opinion on the value of each strategy, called the subjective utility of that

strategy, by judging its ability to minimize costs and maximize benefits. They enact the strategy that they value to have

the highest subjective utility.

We propose that this cost-benefit framework from behavioral economics also applies to the way people collaborate

with AI predictions and explanations. In the context of human-AI decision making, this framework suggests that people

compare the potential benefits of verifying an AI’s predictions (i.e. professional accomplishment or monetary reward)

weighed against its inherent costs (i.e. cognitive effort). The cost of cognitive effort includes the difficulty of the task

itself. Applying the cost-benefit framework to human-AI decision making, we see that the cognitive effort (cost) required

to verify the AI’s prediction depends on the difficulty of the underlying task. Therefore, we hypothesize that:

Increasing the effort required to complete the task reduces overreliance when explanations are present.

4 METHOD

Our research aims to study the effects of explanations on human-AI decision-making. We seek an experimental setup in

which participants accomplish a task in collaboration with an AI system, with and without explanations. To study these

effects through the cost-benefit framework, we create experimental scaffolds that shift the relative costs of verifying the

AI. In the context of this work, costs are the time and cognitive effort required to verify a prediction. We thus developed

an experiment to investigate how AI explanations (or lack thereof) affect participants’ use of different strategies—and

thus overreliance on the AI—across different task difficulties.

4.1 Designing a human-AI collaboration task

In our paper, we use a visual search maze solving task which meets all of our stated needs. Participants are shown a

maze with a start position with four possible exits. Participants are asked to determine which of the four possible exits

is the true exit. With 4 possible answers, the random chance of choosing the correct answer is 25%. We can manipulate

the difficulty of the task by changing the dimensions of the maze. Mazes, especially large mazes, can be difficult to

complete alone; so an AI could conceivably help by making a prediction of which exit is correct. Furthermore, verifying
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Fig. 2. An example of a maze solving task in which the AI’s suggestion is correct. We visualize two different task difficulty conditions.
Left: The easy task, highlight explanation condition. The maze is 10 × 10 and features highlights of the path the AI suggests. The
AI’s suggestion is provided above the answer choices. Right: The hard task, prediction condition. The maze is 50 × 50 and shows
explanation highlights.

the prediction is difficult as the participant still must solve the maze to check. Therefore, including explanations reduces

the cost of verifying the AI’s prediction.

The maze task supports multiple explanation modalities, including highlight explanations, which are easy to check.

We visualize examples of our explanations in Figure 3. We programmatically generate mazes to be 10 × 10, 25 × 25, and

50 × 50 dimensions in height and width, corresponding to easy, medium, and hard tasks, respectively.

4.2 Designing an AI and Explanation

Our study paradigm simulates an AI, with predefined AI predictions for each of our generated mazes. To study

overreliance in human-AI decision making, it is important that the AI accuracy is comparable to human accuracy [6].

When humans and AIs perform roughly equally for a given task, there is no additional incentive for the human

decision-maker to over- or underrely on the AI’s predictions. In pilot studies, the human accuracy was 83.54% across

all difficulty conditions, so we control the number of incorrect AI predictions each participant sees such that model

accuracy is exactly 80%.

We generate one type of explanation: highlight explanations. (Figure 3). Our highlight explanations indicate the

path between the start point and the predicted exist. Highlight explanations have commonly been used in prior XAI

studies [6, 18, 23, 37, 45, 54].

4.3 Mitigating effects of trust

As participants complete a series of maze solving tasks, we do not provide immediate feedback since humans are

particularly sensitive to seeing algorithms err [17]. Lastly, we do not provide any information about the model’s

accuracy, as making this explicit also modulates trust [38, 52–54].

4.4 Measures

We collect the following objective performance measures:

• Overreliance. We define overreliance as the percentage of answers for which participants select the same answer

as the AI among the four questions the AI predicts incorrectly in the collaboration phase.

• Need for Cognition: Each participant’s Need for Cognition (NFC) score [16] is based on a six question survey

scale. Questions 3 and 4 in the scale are reverse coded.
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Likely to Overrely Less likely to Overrely

XAI error

AI’s Prediction:   D
Correct Answer: A

Fig. 3. Left: The medium task, prediction only condition. The maze is 25 × 25 and features the prediction only. Right: The medium
task, explanation condition. The maze is 25 × 25 and features explanations in the form of inline highlights. An example of when the AI
gives an incorrect prediction and explanation.

We additionally collect subjective self-report measures after the testing phase. Unless otherwise noted, each self-report

question is assessed using a 7-point Likert scale. The full set of self-report questions and NFC questions are provided in

the appendix.

5 MAIN STUDY – MANIPULATING TASK COSTS

In our study, we explore our hypothesis (H1) by manipulating how difficulty the task is to do in the presence or

absence of explanations. The presence of an explanation (e.g., highlighting of relevant information) can decrease the

cognitive effort required to verify a AI’s prediction. However, explanations may not dramatically reduce the effort

required to solve a task if the task is easy for a human to solve on their own. We pre-registered this study
1
.

5.1 Conditions

We adopt a two-factor mixed between and within subjects study design in which each participant sees one of two

AI conditions in multiple task difficulty conditions. Half of the participants see both easy and medium task difficulty

conditions, and the other half of participants see only the hard condition, since the amount of time required to complete

the task was approximately the same in these two study configurations.

Task difficulty conditions: The task difficulty condition manipulates the maze difficulty. This manipulation modifies

cognitive effort because it requires more cognitive effort to search for the correct path in a longer maze [43]. Note that

quality of questions, predictions, and explanations remain the same in both task difficulty conditions.

(1) Easy. In the easy condition, participants see a 10 × 10 maze.

(2) Medium. In the medium condition, participants see a 25 × 25 maze.

(3) Hard. In the hard condition, participants see a 50 × 50 maze.

AI conditions: The AI condition manipulates the presence of explanations for an AI’s prediction.

(1) Prediction. In the prediction condition, participants are only provided with the AI’s prediction. The AI’s predicted

answer is displayed directly below the question.

1
osf.io/vp749
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(a) (b)

Fig. 4. (a) Overreliance levels in study 1. We find that explanations reduce overreliance in the medium and hard task conditions. In
the easy task, we find no differences between prediction and explanation conditions. (b) Accuracy levels in study 1. In exploratory
analysis, we find that explanations increase decision-making accuracy in the medium and hard task conditions.

(2) Explanation. In the explanation condition, participants are provided with a highlight explanation in addition to

the AI’s prediction. Highlights are displayed directly on the maze.

5.2 Procedure

The study consists of a human-only training phase, in which participants are given a chance to familiarize themselves

with the task. Once familiarized, participants are placed in a training phase to acquaint themselves with the AI agent

and its explanations (if they are in the explanation condition). The training phase is followed by a testing phase where

participants work together with the AI to answer questions. Specific details on the number of trials and feedback given

to participants are located in the preregistration.

5.3 Hypotheses

H1 predicts that explanations, when they are present, will reduce overreliance when they reduce cognitive effort to

complete a hard task; likewise, explanations will not decrease overreliance when the reduction in cognitive effort is

small (e.g., in the easy task). Therefore H1 has 5 sub-hypotheses:

Hypothesis 1a: When given a prediction but no explanation (i.e. in the absence of any explanations),

overreliance will be lower in an easy task than a medium difficult task.

Hypothesis 1b: In an easy task, there will be no measurable difference between overreliance whether

explanations are present or absent.

Hypothesis 1c: In a medium difficulty task, overreliance will be higher when using a prediction without

explanations than using a prediction with an explanation (in the form of highlights).

Hypothesis 1d: In a hard task, overreliance will be higher when using a prediction without explanations

than using a prediction with an explanation (in the form of highlights).

Hypothesis 1e: In a hard task, there will be an interaction effect between participants’ Need for Cog-

nition (NFC) scores and the type of explanation modality (highlights or lackthereof) when measuring

overrreliance.
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5.4 Participants

We recruited a total of 𝑁 = 340 participants (𝑁 = 170 in prediction only, 𝑁 = 170 in explanation, half of which are

in the easy and medium condition, and the other half of which are in the hard condition) from Profilic (prolific.co),

an online crowdsourcing platform. We only included participants that had at least 50 submissions, were located in

the United States, were native English speakers, had an approval rating of at least 95% on Prolific, and that had not

completed our task before. All participants received a payment of $4 for 20 minutes of their time.

5.5 Results

We analyze our results for Hypothesis 1a, 1b, and 1c using the following Bayesian linear mixed effects model
2
:

overreliance ∼ 1 + Task difficulty ∗ AI condition + (1 | participant) + (1 | maze)

Differences Estimate Lower 95% CI Upper 95% CI

Easy Prediction - Medium Prediction -3.967 -5.480 -2.53

Easy Prediction - Easy Explanation 0.164 -1.678 2.17

Medium Prediction - Medium Explanation 0.916 -0.305 2.08

We do a post-hoc Tukey Test to to test for pairwise differences. We find that overreliance was higher in medium

prediction than in easy prediction, supporting H1a. We find that there is no difference between overreliance rates in

easy prediction and easy explanation, supporting H1b. We find that medium prediction does not have more overreliance

than medium explanation, not supporting H1c. We visualize these results in 4(a).

We analyze our results for Hypothesis 1d using the following Bayesian linear effects model:

overreliance ∼ 1 + AI condition + (1 | participant) + (1 | maze)

Differences Estimate Lower 95% CI Upper 95% CI

Hard Prediction - Hard Explanation 1.74 0.889 2.76

We find that hard prediction has higher overreliance than hard explanation, supporting H1d.

We analyze our results for Hypothesis 1e using the following Bayesian linear mixed effects model:

overreliance ∼ 1 + AI condition ∗ Need For Cognition + (1 | participant) + (1 | maze)

Differences Estimate Lower 95% CI Upper 95% CI

AI Condition:NFC 0.35 -0.76 1.49

We find that there is no interaction effect between NFC and AI Condition in the hard task, finding no support for H1e.

5.6 Summary.

Our results show support for H1a, H1b, and H1d. We find that the easy task, compared to the medium task, has lower

levels of overreliance in the prediction condition. This validates our hypothesis H1a, supporting our conjecture that

overreliance increases with task difficulty, barring any explanations.

2
For all studies, we say that our hypothesis is supported if the 95% credible interval of the posterior distribution for a learned coefficient is greater (or

less) than 0 (depending on the direction of the hypothesis).
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We find that, in the easy task, there is no difference between overreliance in prediction and highlight explanation

conditions, validating our hypothesis H1b and replicating the effect found in prior work. This supports our conjecture

that explanations do not sufficiently reduce the cognitive cost required to complete a task when the task is easy.

While the difference is more marked in the medium task, the explanation does not cross the threshold to refuting the

null hypothesis. Therefore, H1c was not validated. We posit that this occurred because the medium task difficulty is

not sufficiently difficult enough to elicit differences. This postulation is supported by the finding that, in the hard task,

there exist differences between overreliance in prediction and highlight explanations. As such, H1d was validated.

In the hard task, our results do not show an interaction effect between NFC and AI Condition, so H1e was not

validated. This could be because the task is too difficult to demonstrate differences in behavior across peoples’ NFC,

since most people are likely to overrely anyway. In an exploratory analysis, we find a interaction between AI condition

and Need for Cognition (NFC) in the medium task. As NFC scores increase, the difference between overreliance in

prediction and explanation diminishes. The medium task could be a sufficiently difficult enough task to demonstrate

differences in behavior across NFC.

Additionally, we ran an exploratory analysis to measure the effects of explanations on human-AI decision-making

accuracy. In the hard task, explanations increase the accuracy compared to the prediction only condition (see Figure 4(b)).

In summary, explanations did not produce an observable reduction in overreliance in easy or medium tasks, but did

reduce overreliance in the hard task. This suggests that tasks may need to be substantially complex and effortful to

yield benefits with XAIs.

6 DISCUSSION

In line with prior work examining cost-benefit analyses in the allocation of mental effort [34], our results provide

evidence that humans engage in cost-benefit analyses when choosing how to collaborate with an AI when making

decisions. Prior work found that explanations, which reduce the cost of verifying an AI’s prediction, did not prompt

changes in overreliance. We replicate this result for the easy task condition, and we extend it by demonstrating that

explanations do reduce overreliance in a hard task condition, in which the utility of verifying the AI significantly

increases when people have access to explanations.

6.1 Analysis of Prior Work

As we have studied the effect of task difficulty and explanation difficulty, we can dissect the study designs and postulate

the reason for mixed results in some prior work. For example, one study’s authors find that explanations do not decrease

overreliance [6]. This could be due to the task being sentiment analysis (low-effort) or the explanation modality being

complicated to understand (logical explanations) in a higher-effort LSAT task. On the other hand, another study’s

authors find that cognitive forcing functions decrease overreliance compared to simple explanations [9]. This could be

due to cognitive forcing functions increasing the difficulty of doing the task.

6.2 Implications

Our results demonstrate one of the first approaches that successfully uses explanations to reduce overreliance and thus

increase human-AI performance [19]. The results imply not that XAIs contain the information needed for effective

human-AI collaboration, but that in many contexts, they do not increase the subjective utility enough to prompt the

decision-maker to override a strategy of overreliance. In this section, we discuss how designers can manipulate costs to

increase the utility of verifying the AI.
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Manipulating costs. One clear design implication is that explanations should strive to reduce the cognitive effort of

verifying a model’s predictions as much as possible. Our results suggest that a major reason prior work did not observe

reductions in overreliance was because this reduction in cost was insufficient to sway users’ strategies. If this reduction

is not possible or if the nature of the task is already effortless, XAI techniques may continue to trigger overreliance. As

in our experiments, designers can also manipulate the relative costs of verifying the AI by increasing the baseline task

difficulty. This outcome may arise naturally as AI performance improves and AI systems tackle more challenging tasks.

However, in many settings, increasing the difficulty of the task may not be feasible.

Strategies for decreasing overreliance. Different users subjectively place different weights on costs and benefits, causing

them to adopt different strategies. Given our observed differences among individual users both in our studies and in

prior work [9], future work may also consider explanation strategies that adapt to an individuals’ perception of costs

and benefits.

6.3 Limitations and future work

Explanation Format. One crucial limitation of our work is the evaluation of explanation utilization only in the domain

of maze-solving tasks. Future work is needed to investigate the extent to which our findings generalize to different

task domains and explanation modalities. We also evaluated our study with simulated explanations and further work

is needed to assess the impact of explanation quality on our results. Recent work has cast doubt on the explanatory

power of attention weights in natural language processing models [27] or the analogous saliency maps in computer

vision [3, 4, 48], suggesting that imperfect explanation modalities ought to be tested in themselves.

User needs and values. Our study was evaluated with crowdworkers in a low-stakes setting, and thus may not be

reflective of high-stakes target domains of interest (such as medicine, law, risk assessment, etc.). While prior work

has established ample evidence of cognitive biases in high-stakes domain [14, 15, 21, 39, 40, 50], practitioners in these

domains may have vastly different needs and values, yielding different assessments of costs and benefits.

Trust. This paper does not address the causes and effects of AI explanations on trust. Previous work has suggested

that trust increases someone’s likelihood of using a machine [53, 54]. However, XAI studies found conflicting results

about the effect of explanations on trust. Some studies found that explanations increase trust [6, 8], some found no

significant effect [13, 33, 54], while others found varying effects under different conditions [35, 36].

7 CONCLUSION

In human-AI decision-making, prior literature finds that XAI methods do not empirically improve peoples’ ability to

discern correct from incorrect model predictions. By studying human overreliance on an AI’s prediction through the

lens of a cost-benefit framework, we identify factors when explanations reduce overreliance. When a task is difficult and

explanations are easy to use to verify an AI, people are less likely to overrely. We find that people are willing to forego

a portion of their monetary reward to attain explanations when these conditions are met. Our experiments suggest that

overreliance is not an immutable inevitability of cognition but a strategic choice where people are responsive to the

costs and benefits of engaging in the cognitive effort that is required to reduce their overreliance.
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A APPENDIX

The following is the contents of the appendix: (1) Self-report Questions, (2) Frequentist Analysis, (3) Summary of

Previous pre-registrations, and (4) Previous Pre-registrations.

A.1 Self-reportQuestions

6-Question Trust Survey:

(1) I believe the AI is a competent performer. (on a 7 point Likert scale)

(2) I trust the AI. (on a 7 point Likert scale)

(3) I have confidence in the advice given by the AI. (on a 7 point Likert scale)

(4) I can depend on the AI. (on a 7 point Likert scale)

(5) I can rely on the AI to behave in consistent ways. (on a 7 point Likert scale)

(6) I can rely on the AI to do its best every time I take its advice. (on a 7 point Likert scale)

Task Survey:

(1) I found this task interesting. (on a 7 point Likert scale)

(2) I found this task difficult without the AI. (on a 7 point Likert scale)

(3) I found this task difficult even with the AI. (on a 7 point Likert scale)

(4) I would prefer to complete this task with the AI’s suggestions than to complete it by myself. (on a 7 point Likert

scale)

(5) Please select the option below which best represents how you used the AI. (4 options, listed below)

(a) I did not use the AI and completed the task by myself.

(b) I first completed the task myself and then verified my response with the AI’s.

(c) I first looked at the AI’s suggestion and then verified it was correct.

(d) I always chose the AI’s suggestion.

(6) Approximately, how accurate do you think the AI is? Please indicate using the slider below. (on a 100% slider)

(7) In the box below, please describe how you used the AI when its suggestions were given to you. (free form answer

box)

(8) In the box below, please describe how you chose between using the AI and doing the task yourself. (free form

answer box)

Need for Cognition Survey:

(1) I would prefer complex to simple problems. (on a 5 point Likert scale)

(2) I like to have the responsibility of handling a situation that requires a lot of thinking. (on a 5 point Likert scale)

(3) Thinking is not my idea of fun. (on a 5 point Likert scale)

(4) I would rather do something that requires little thought than something that is sure to challenge my thinking

abilities. (on a 5 point Likert scale)

(5) I really enjoy a task that involves coming up with new solutions to problems. (on a 5 point Likert scale)

(6) I would prefer a task that is intellectual, difficult, and important to one that is somewhat important but does not

require much thought. (on a 5 point Likert scale)
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A.2 Frequentist Statistics Analysis

As frequentist statistics are more common in HCI literature, we add the frequentist analysis of our hypotheses here.

Study 1. We analyze our results for H1A, H1B, and H1C using a linear mixed effects model with a logistic linking

function. We include overreliance as the dependent variable; We add fixed effects of AI condition, task difficulty, as well

as the interaction between the two. We include participant and maze as two random effects. As a criterion for statistical

significance, we adopt an alpha value of 0.05 (two-sided). Specifically, the model specification was as follows:

overreliance ∼ 1 + Task difficulty ∗ AI condition + (1 | participant) + (1 | maze)

We do a post-hoc Tukey Test to validate the differences in pairs. We find that hard prediction has more overreliance

than easy prediction (𝑝 < 0.0001). We find that there is no significant difference between overreliance rates in easy

prediction and easy XAI (𝑝 = 0.9999). We find that hard prediction does not have significantly more overreliance than

hard XAI (𝑝 = 0.6985). Coefficients for our model are as follows: Intercept (-5.81), Hard Task (4.40701), Explanation

Condition (0.07381), Interaction (-0.93186).

We analyze our results for H1D and H1E using a linear effects model with a logistic linking function. We include

overreliance as the dependent variable; We add a fixed effect of AI condition. We include participant and maze as two

random effect. As a criterion for statistical significance, we adopt an alpha value of 0.05 (two-sided). Specifically, the

model specification was as follows:

overreliance ∼ 1 + AI condition + (1 | participant) + (1 | maze)

We analyze our results using a linear mixed effects model with a logistic linking function. We include overreliance

as the dependent variable; We add two fixed effects of AI condition and Need for Cognition (NFC) and an interaction

between the two. We include participant and maze as two random effect. As a criterion for statistical significance, we

adopt an alpha value of 0.05 (two-sided). Specifically, the model specification was as follows:

overreliance ∼ 1 + AI condition ∗ Need For Cognition + (1 | participant) + (1 | maze)

We find that prediction has more overreliance than highlight explanation (𝑝 < 0.0001). We find that there is not a

significant interaction between NFC and AI condition (𝑝 = 0.4713). Coefficients for our first model are as follows:

Intercept (0.6861) and Highlight Explanations (-1.6785). Coefficients for our second model are as follows: Intercept

(3.0483), Highlight Explanations (-2.9422), NFC (-0.6644), and Interaction (0.3536).

Study 2. We analyze our results using a linear model with a logistic linking function. We include overreliance as the

dependent variable; We add fixed effects of the explanation condition. We include participant and maze as two random

effects. As a criterion for statistical significance, we adopt an alpha value of 0.05 (two-sided). Specifically, the model

specification was as follows:

overreliance ∼ 1 + Explanation Condition + (1 | participant) + (1 | maze)

We do a post-hoc Tukey Test to validate the differences in pairs. We find that written explanations have more overreliance

than highlight explanations (𝑝 = 0.0027). Coefficients for our model are as follows: Intercept (-3.4346) and Written

Explanations (1.6813).
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Study 3. We analyze our results using a linear model. We include utility as the dependent variable. In the first

condition, we add fixed effects of the explanation. In the second condition, we add fixed effects of the task difficulty.

We include participant as a random effect. As a criterion for statistical significance, we adopt an alpha value of 0.05

(two-sided). Specifically, the model specification was as follows for the first condition:

utility ∼ 1 + Explanation Condition + (1 | participant))

Specifically, the model specification was as follows for the second condition:

utility ∼ 1 + Task Difficulty Condition + (1 | participant))

We do a post-hoc Tukey Test to validate the differences in pairs. We find that highlight explanations have more

utility than written explanations (𝑝 < .0001). Coefficients for our model are as follows: Intercept (25.42) and Written

Explanation (-18.68).

We find that highlight explanations have a higher utility in the hard task than in the easy task (𝑝 = 0.0070). Coefficients

for our model are as follows: Intercept (27.13) and Easy Task (-16.82).

A.3 Discussion of Previous Pre-registrations

We previously pre-registered two studies that made similar hypotheses using a popular Wikipedia Question Answering

Task [46]. We did not validate our hypotheses with these studies.

Since the primary differences between these studies and our final study lie in the task and statistical analysis, we

posit that the Wikipedia Question Answering Task is not suitable for detecting task difficulty differences and posit

that we previously had a conceptual error in our hypotheses. The former may be due to the fact that modulating the

paragraph length does not incur any significant extra cognitive cost, as it may be easy to skim to find the relevant

key words. The conceptual error is due to initially thinking that explanations increase cost in the easy task, where we

finally settled on the framing that explanations do not decrease the cost in the easy task. This prompted our switch

from Frequentist to Bayesian Statistics, where we are able to have “no difference” hypotheses.

A.4 Previous Pre-registrations

We previously pre-registered two studies
3
.

Study Design. We had a similar study design as outlined in our main paper. The main difference is that, instead of

the maze task, we use the Wikipedia Question-Answering Task, where our easy condition was one paragraph and our

hard condition was five paragraphs. Our explanation condition was in the form of “perfect" inline highlights, where the

answer to the model’s prediction was highlighted in the text, as common in prior work [6, 18, 37, 38].

Hypotheses. Our specific hypotheses can be found in the preregistration links.

Results. None of our hypotheses in this section were approaching statistical significance, so we ended the study early

at a number of participants lower than pre-registered; therefore, we do not report these values.

3
osf.io/h9256 and osf.io/5q7r6
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